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Abstract. A model is introduced with a massive scalar coupling to the Yang-Mills term in four-dimensional
gauge theory. It is shown that the resulting potential of colour sources consists of a short distance Coulomb
interaction and a confining part dominating at large distances. Far away from the source the scalar vanishes
~ 71 while the potential diverges linearly. Up to an N,-dependent factor of order 1 the tension parameter
in the model is gmf, where m denotes the mass of the scalar and f is a coupling scale entering the

scalar-gluon coupling.

1. Recently it was observed that a string inspired coupling
of a massless dilaton to gauge fields yields a linearly in-
creasing vector potential from pointlike colour sources if
a logarithmic divergence of the dilaton at infinity is per-
mitted [1,2]. While the string inspired model also has the
virtue to yield a regularization of the Coulomb potential
if a solution is sought with the dilaton vanishing at in-
finity, it can not be solved in the presence of a dilaton
mass term, which would define a more realistic and phe-
nomenologically more interesting model. This motivated
me to construct a direct coupling of a massive scalar to
chromo-electric and magnetic fields subject to the require-
ment that the Coulomb problem still admits an analytic
solution. The model for the scalar-gluon coupling that
emerged from these efforts is
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where 3 is a parameter and f is a mass scale characterizing
the strength of the scalar-gluon coupling. This new model
differs from the previous model in several respects: While
in the string inspired model with a massless dilaton the
tension parameter turned out to be proportional to the
square f2 of the dilaton coupling scale and is indepen-
dent of the QCD coupling g, in the new model the tension
is proportional to gmf. Moreover, the quark interaction
potential in the present model turns out to resemble a
Cornell or Buchmiiller-Tye type potential [3], which is a
phenomenologically attractive property.

To analyze the Coulomb problem in the theory de-
scribed by (1) we consider a pointlike colour source, which
in its rest frame is described by a current
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Here 1 < i < N2 — 1 is an su(V,.) Lie algebra index and
C; = ¢t - X, - is the expectation value of the su(N,)

generator X; for a normalized spinor ¢ in colour space.

These expectation values satisfy
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as a consequence of the identity
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for su(N,.) generators in an N.-dimensional representa-
tion.

The equations of motion for the scalar and gluons
emerging from this source follow like in [1]: The equations
are for general sources
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and to explore the impact of the scalar-gluon coupling
on the Coulomb potential we consider the Gauss law and

Faraday’s law for stationary configurations in the presence
of the source (2):
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where ¢ = ¢'X; and! E = —Fy;/e’ X ;.

! Note that here ¢ is a spatial index and j is a Lie algebra
index. In all other equations in the paper i, j, k always denote
Lie algebra indices
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The vector potential A is pure gauge in the static limit
since the chromo-magnetic field

B=VxA—-igAxA

vanishes. Therefore we end up with
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while Faraday’s law reduces to V X E; = 0 complying with
chromo-electric potentials E; = —V®;.

Clearly, the solution to the Coulomb problem (4,5)
includes the case of inertial motion of the colour source
through appropriate Lorentz boosts.

Equation (4) or more generally its analog for an arbi-
trary spherically symmetric colour density yields for the
fields outside the density
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and inserting this relation in (5) yields
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where the abbreviation
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was used.
Substituting y(r) = r¢(r) in (6) and multiplying by
dy/dr yields the first integral
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This can readily be solved for arbitrary integration con-
stant K, but the boundary condition lim, ., ¢(r) = 0
uniquely determines K = —myu. This yields

v2) = £ 4 (48 - &) exp(—2mr).

Therefore, the scalar field emerging from the pointlike
colour source is

o= j:i\/:; + (yg - %) exp(—2mr) , (7)

while the chromo-electric potentials consist of a Coulomb
and a confining part:
Ci Nc
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At large distance the scalar field vanishes ~ r~! for
y2 > 0, while the chromo-electric potentials yield linear
confinement in the non-relativistic regime, and also in the
relativistic regime if applied in the framework of a reduced
Salpeter or no-pair equation [4].

2. Equation (8) implies that a classical (anti-)quark with
colour orientation (g, C; (g = 1, in the field of a classical
source of colour (; (a heavy quark) sees a potential
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with the upper sign holding for quark—quark interactions
and the lower sign applying to quark—anti-quark interac-
tions. The colour factor §(|¢f - ¢y — Nic) defines a double
cone around the direction of (. This double cone has an
angle tanf. = v/N. — 1 against the symmetry axis spec-
ified by (s, and separates domains of attraction from do-
mains of repulsion: Quarks of colour ¢, in the double cone
are repelled and anti-quarks are attracted, while quarks
with colour outside the cone are attracted and anti-quarks
are repelled.

3. Potentials with an 1/r singularity at short distances
and linear behaviour at large distances have been very
successfully applied in investigations of the quarkonium
spectrum, see e.g. [3] for two of the classical references in
the field. Phenomenological tension parameters in heavy-
light meson systems are of order o ~ (430 MeV)? [5], and
in the present model the tension would be determined by
the mass and coupling scale of the scalar field according
to o~ gmf.

Of course, the derivation of (8) does not imply that this
yields the correct interquark potential in hadrons. What
it does indicate is that direct couplings of scalar fields
to Yang-Mills terms provide an interesting new paradigm
for the description of confinement in gauge theories. This
might be realized in QCD through a fundamental scalar,
or eventually through a low energy effective scalar degree
of freedom. The possibility of a fundamental scalar cannot
be excluded, since the coupling scale f or the mass might
be large enough to make such a scalar invisible to present
day experiments. On the other hand, there exist scalar
resonances in the hadronic spectrum whose roéle has not
been understood yet.

On the level of a low energy effective scalar degree
of freedom, one might speculate that the Lagrangian (1)
with 8 = 0 is realized in the low energy regime through
a QCD dilaton coupling to the trace anomaly, while at
high energies the standard QCD Lagrangian would apply.
Such a picture can be motivated, if one combines the old
idea of scalar meson dominance of the trace of the energy-
momentum tensor [6] with the QCD trace anomaly, as in
[7]. Since the trace anomaly is proportional to the Yang-
Mills term this could also justify the scalar gluon cou-
pling in (1) with 8 = 0, and (9) then tells us how the
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dilaton changes the quark interaction potential. A disad-
vantage with this picture concerns the disappearance of
the Coulomb term in the low energy regime.

The derivation of (9) from (1) indicates that direct
couplings of scalars to Yang-Mills terms provide a new
paradigm for confinement in gauge theories, and it seems
well justified to dedicate more efforts to this approach to
the confinement problem.
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